

Can small, open-label trials be used to establish efficacy? A tale of two trials

Lynne P. Yao, M.D. Acting Associate Director Office of New Drugs Pediatric and Maternal Health Staff CDER

Disclaimer and Acknowledgements

- The views expressed in this talk represent my opinions and do not necessarily represent the views of the FDA.
- I would like to acknowledge Ethan Hausman, M.D. for his contributions to the slides I will be presenting. He has previously given talks at this course on Kuvan.

Objectives

- Review two rare diseases: Phenylketonuria and N-actetylglutamate synthase (NAG-S) Deficiency
- Review the open-label clinical trials leading to the approval for products to treat these conditions
- Understand the differences in these clinical trials
- Review specific clinical development contexts that may allow for use of open-label trials to establish efficacy

Pertinent PKU Background

- Patients have reduced/altered function of an enzyme (PAH) that breaks down the amino acid phenylalanine (Phe).
 1/10,000 live births in the US, or about 28,000 US patients
- Phe builds up to toxic levels in the blood
 - <u>Unaffected</u>: Blood Phe < 1 mg/dL (60 uM)
 - **<u>PKU</u>**: Blood Phe from 6 to > 30 times normal.
- Elevated blood Phe leads to progressive neurocognitive impairment
 - <u>Goal</u>: all patients < 600 uM, children younger than 8 years old <480 uM; <u>NIH Consensus Conference 2000</u>
- High blood Phe in pregnant women can cause heart and brain damage in off-spring
 - <u>Goal</u>: <360 uM from 3 months prior to conception through delivery; <u>NIH-CC 2000</u>

PKU Background

PAH→ phenylalanine hydroxylase

H2O→ cellular/mitochondrial water

DHPR→ dihydropteridine reductase

 $NAD(\underline{H}) \rightarrow$ nicotinamide adenine dinucleotide <u>dehydratase</u> (arch. dehydrogenase)

Treatment

- Low dietary protein (low-Phe diet):
 - Lowers blood Phe
 - Improves neurocognitive outcomes
 - Decreases risk to off-spring of affected women
 - Potential biomarker
- Strict life-time adherence to a low-Phe diet is difficult to maintain.
- Therefore, a drug that helps reduce blood Phe that has a favorable risk profile might be a useful adjunct to low Phe diet.

Pharmacologic Treatment

- Kuvan→ 6-R-tetrahydrobiopterin (6R-BH4, sapropterin).
 - Postulated to work in the subset of patients with residual PAH activity
- The Sponsor and FDA therefore determined that a <u>short-term study</u> comparing blood Phe in drugand placebo-treated patients was <u>reasonable</u> for establishing efficacy.
- Longer duration studies could be used to enhance the safety database

Planned Studies

- Study 1: Open-label, uncontrolled "screening" study
 - Identify potential responders to Kuvan
- Study 2: Short-term, Randomized, double-blind, placebo-controlled study
- Study 3: Open-label, uncontrolled study in pediatric patients with well-controlled blood Phe

- Study 1: <u>Screening</u> study for potential responders.
 - <u>Open-label</u>, <u>uncontrolled clinical trial</u> of approximately
 500 patients with PKU, <u>></u>8 years old, baseline blood
 Phe levels ≥450 uM
 - <u>Diet not necessarily controlled</u> (e.g.: "usual" pre-study diet: +/- diet control). Patients instructed not to make changes in dietary Phe intake.
 - Dose: 10 mg/kg/day for 8 days
- For the purposes of this study, response was <u>empirically</u> defined as a ≥30% decrease in blood Phe from Baseline.
- At Day 8, 20% of patients responded.

Study 1: Mean blood Phe

Figure 3: Mean Percent Change Blood Phe; AP (N=485) -30 -10 0 10 20 30 40 50 60 70 80 90 -110 -90 -70 -50 Mean Percent Change Blood Phe

Source: Original NDA review

- Overall (N=485)
 - Day 1=1004 uM
 - Day 8=906 uM
 - Mean % change = -11%
- Responders (N=96)
 - Day 1=806 uM
 - Day 8=414 uM
 - Mean % change =-50%
- Non-Responders
 - Day 1=1054 uM
 - Day 8=1027 uM
 - Mean % change=-2%

Study 2

- Study 2: Confirmatory Study:
 - Responders from Study 1 entered a 6-week
 <u>randomized (1:1), double-blind, placebo-controlled</u>
 study. Kuvan (10 mg/kg/day) or placebo for 6 weeks
 - <u>Diet not necessarily controlled</u> (e.g.: "usual" pre-study diet: +/- diet control). Patients again instructed not to make changes in dietary Phe intake.
- Efficacy (response): Mean change in blood Phe at Wk 6.
 - Mean change in the Kuvan-treated group from Baseline minus mean change in the Placebo-treated group from Baseline.

 \leftarrow

Study 2 Efficacy Table

	Sapropterin (N=41)	Placebo (N=47)					
Baseline Blood Phe Level ¹ (µmol/L)							
Mean (±SD)	843 (±300)	888 (±323)					
Percentiles (25 th , 75 th)	620, 990	618, 1141					
Week 6 Blood Phe Level (µmol/L)							
Mean (±SD)	607 (±377)	891 (±348)					
Percentiles (25 th , 75 th)	307, 812	619, 1143					
Mean Change in Blood Phe From Baseline to Week 6 (µmol/L)							
Adjusted Mean (±SE) ²	-239 (±38)	6 (±36)					
Percentiles (25 th , 75 th)	-397, -92	-96, 93					
Mean Percent Change in Blood Phe From Baseline to Week 6							
Mean (±SD)	- 29 (±32)	3 (±33)					
Percentiles (25 th , 75 th)	-61, -11	-13, 12					

→p<0.001 [ANCOVA]

Source: Current Kuvan label located on the "Drugs @ FDA" website.

Conclusions

- Summary: Kuvan was approved for use in patients with BH4 responsive PKU
- Open-label study design used to identify potential responders to enroll into a subsequent enrichment study
- Since not all questions were answered prior to approval, post-marketing studies/assessments include:
 - Safety, efficacy, and pharmacokinetic studies in patients < 4 years old at study entry
 - Long term growth, and neurocognitive studies in patients <8 years old at study entry
 - Implementing a registry to last at least 15 years, and including assessments for effects on pregnancy/lactation
 - Gene analyses to characterize response based on specific mutations/polymorphisms

And now for something completely different... Carglumic acid for N-acetylglutamate synthase (NAGS) deficiency

N-acetyl glutamate synthase (NAGS) deficiency

- Rarest urea cycle defect
- Approximately 50 cases known worldwide
- High plasma ammonia
- Clinical symptoms are related to severe and/or prolonged hyperammonemia

Clinical "Studies" Information

- Retrospective case series in 23 patients with NAGS deficiency treated over 16 years
 - 13 evaluable patients with "complete" documentation of ammonia levels and clinical course
 - 6 evaluable patients without concomitant ammonia lowering therapies or protein restriction
- Efficacy outcomes
 - Plasma ammonia, glutamine and citrulline levels in short and long term
 - Growth, neurological and psychomotor developmental outcomes
- No formal statistical analysis

Efficacy evaluation: Plasma Ammonia

	Baseline	Short-term (Day 1)	Short-term (Day 2)	Long-term	
Ν	13	10	8	13	
Mean (SD)	270.8 (358.8)	180.7 (357.7)	68.5 (78.0)	23.0 (6.89)	
Median	157.0	64.5	44.0	24.0	
Range	72.0-1428.0	25.0-1190.0	11.0-255.0	9.0-34.0	

- Long-term treatment: Median 5.8 years; range 1.3-16 years
- All patients demonstrated consistent and sustained lowering of plasma ammonia levels
- All were treated exclusively with Carbaglu in the long-term
- Some of these patients were treated initially with other ammonia lowering therapies

Efficacy evaluation: Neurologic outcome

Advisory Committee Meeting

- Do the clinical data included in the Carbaglu application for treatment of hyperammonemia in NAGS deficiency provide substantial evidence of efficacy?
 - Vote: 12 yes; 0 no
- Committee comments:
 - Underlying pathophysiology of the disease is well understood and the mechanism of action of the drug is clear
 - Despite the retrospective nature of the study presented, plasma ammonia decreased with Carbaglu treatment and remained decreased long-term
 - Elevated ammonia potentiates most of the neurologic problems with this disease and neurologic improvements were observed during treatment with Carbaglu
- The committee believed this application meets the legal and regulatory definition for substantial evidence.

Conclusions

- An advisory committee agrees that despite the absence of a prospective, wellcontrolled trial, the evidence was sufficient because:
 - Endpoints were objective and outcomes were robust and sustained
 - The population studied included most of the known patients

Overall Conclusions

- Understanding Rare Disease Natural History
 - Endpoints
 - Study Design
- Open-label studies are possible but not under all circumstances
 - One size does NOT fit all
 - Context of the situation is unique for all rare diseases
 - Evidentiary standards are NOT different for rare diseases
- Early and frequent communication with FDA

Challenge Questions

 What was the purpose of the open-label, uncontrolled Kuvan study?

A. Identify responders to be enrolled in a R, DB, PC controlled trialB. Establish substantial evidence of efficacy as a single trialC. To confuse FDA

- Under very specific circumstances, can a small, openlabel, uncontrolled clinical trial be used to support substantial evidence of efficacy of a product?
- Name 2 conditions in the Carbaglu clinical trial that allowed for this trial to support substantial evidence of the efficacy in the treatment of NAG-S deficiency.

Back up slides

Review: Dietary interventions for phenylketonuria

Comparison: 3 PKU participants at diagnosis: Low-phenylalanine diet versus moderate phenylalanine diet

Outcome: 3 Intelligence Quotient (IQ)

Study or subgroup	Low-phe diet	ł	ligh-phe diet		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Fixed,95% CI		IV,Fixed,95% CI
I IQ at 4 years							
US/PKU Collaborative	58	94 (16)	53	91 (15)		100.0 %	3.00 [-2.77, 8.77]
Subtotal (95% CI)	58		53			100.0 %	3.00 [-2.77, 8.77]
Heterogeneity: not applica	able						
Test for overall effect; Z =	1.02 (P = 0.31)						
2 IQ at 6 years							
US/PKU Collaborative	66	99 (16)	66	97 (15.7)		100.0 %	2.00 [-3.41, 7.41]
Subtotal (95% CI)	66		66			100.0 %	2.00 [-3.41, 7.41]
Heterogeneity: not applica	able						
Test for overall effect: Z =	0.72 (P = 0.47)						
Test for subgroup different	ces: Chi ² = 0.06, c	lf = 1 (P = 0.80),	l ² =0.0%				
						1	
				-10	-5 0 5	10	
				Favour	s High-phe Favours Lo	w-phe	

Poustie VJ, Wildgoose J. Dietary Interventions for PKU.

Cochrane Database Syst Rev. 2010 Jan 20;(1):CD001304.

Why no diet control

- Postulates
 - Mean change in blood Phe if Kuvan has no effect should be zero
 - Under study conditions of no particular diet control other than instructions to maintain diet, patients are just as likely to increase as decrease their dietary Phe. Therefore, in the short-term, mean change in blood Phe should be zero.
- Since Study 1 did not control for diet, a <u>>30%</u> decrease in blood Phe was <u>empirically</u> chosen to define a decrease that was more likely to be associated with Kuvan treatment than undocumented changes in diet.
- Reasonable approach if preliminary findings were confirmed in a subsequent placebo-controlled study.

Blood Phe Profiles

Study 3

- Study 3 (2 part study)
 - Part 1: <u>Open-label</u>, <u>uncontrolled</u> study of 90 patients with PKU, 4 to 8 years old, baseline blood Phe <480 uM
 - <u>Phe restricted diet</u>. Instructed not to make changes in their diet during the study.
 - Dose: Kuvan 20 mg/kg/day for 8 days
 - Part 2: Dietary protein and drug dose adjustable based on blood Phe.
- <u>Part 1</u>: At Day 8, 56% of patients were identified as responders (≥30% decrease in blood Phe from Baseline)
 - Conclusion Part 1→ Likelihood of response may increase with higher dose (20 vs. 10 mg/kg/day) OR lack of diet control in Study 1 may have partially masked response
- <u>Part 2</u>: Study design issues [modifiable drug and diet] and efficacy outcome data precluded use in labeling.

Objectives

- Understand the challenges in designing adequate and well controlled trials to study NAGS deficiency
- Review a unique clinical development plan for an ultra-rare disease
- Understand the importance of identifying clinically important objective endpoint measurements in clinical "study" design