Natural History Studies

Form Follows Purpose

NIH-FDA Natural History Studies Conference
Bethesda, MD May 2012

Marc K Walton MD, PhD
Associate Director for Translational Medicine
Office of Translational Sciences
CDER-FDA

The views expressed are those of the author, and do not necessarily represent an official FDA position.
Outline

• Why and Where Apply NH knowledge
• Design Principle – Objectives Drive Content
• NH Study Type Overview
• Design Principle – Planned Evolution
• Communal Endeavor
• Operational Design Concepts
Rare Disease

• Orphan disease
 ➢ Less than 200,000 patients in U.S.

• Rare – *for purposes of this presentation*
 ➢ Qualitative rather than quantitative term
 ➢ Subset of orphan diseases
 ➢ Increased difficulty of therapy development
 ➢ Therapy development for large population
 orphan disease much like for common diseases
Natural History Knowledge

• Important source of critical knowledge to advance therapy development
• Guides selection of design features for Tx studies
 ➢ Patient population to study
 ➢ Outcome assessments
 ➢ Duration of study
 ➢ Biomarker usage
• Guides choice of objectives for therapy benefit
• Drug development program can fail if wrong choices
Critical knowledge not known for many rare diseases

- Successful therapy development may require substantial new natural history knowledge

- NH studies are not part of drug treatment studies
 - NH knowledge needs to be applied in Tx development program
 - NH studies most useful if conducted and data available prior to Tx development program

- NH studies contribute to therapy development along with interventional trials
NH Knowledge in Therapy Development

• NH knowledge is disease specific
 ➢ Not Tx specific

• Appropriate to be done outside of any specific drug development program
 ➢ Shared knowledge for community to use
 ➢ Greatest value of NH knowledge if:
 ➢ Widespread origination of information
 ➢ Widely available to apply
 ➢ Applicable to multiple potential Tx development programs
Time Period of NH Knowledge Use

- Chief use of NH knowledge is during the drug development (IND) period
 - Not the Application for Marketing Approval period (NDA / BLA)
 - NH study data usually not significant part of NDA / BLA review
 - IND studies will have succeeded (or failed) prior to submission of NDA / BLA
 - Avoiding study failure is value of NH study
Study Conduct and NH Data Quality

• Value of NH knowledge is mainly in designing clinical trials (IND period)
 - Critical regulatory decision (Tx approval) does not depend on the NH data
 - Data does not need to be verifiable GCP quality
 - Full GCP documentation usually not essential
 - Good quality data is important
 - Poor quality data may mislead the decision-making during the Tx development program

• Some data quality and conduct quality monitoring should be included to ensure quality is adequate
NH Study Design Principle

• Careful, prospective planning essential to success
 ➢ Just as for any clinical study
 ➢ Plan with objectives in mind
 ➢ Objectives drive study design and operational choices

• Consider broad range of possible therapies
 ➢ What knowledge will those Tx development programs need – not all the same
 ➢ Enables the NH data to support advancement of multiple different therapeutic possibilities
Objectives Determine Design Content

• Identify and state all objectives for the study
 ➢ All purposes study data are intended to serve
 ❖ Explicitly and comprehensively
 ❖ What specific questions arise during a drug development program that will need to be answered based on NH knowledge
 ❖ Determines what data are needed to answer questions

• Experienced drug development perspective in NH study design stage important to this step
Questions During Tx Development

Examples:

• Who to enroll in studies?
• How to determine what doses to test?
• How to determine what dosing schedule to test?
• What intermediate assessments are useful?
• What is the clinical efficacy endpoint?
• How is the endpoint measured?
• What is the duration of the study?
• How large is the study?
Aspects of NH Knowledge

• Define the disease
 ➢ Disorders that are poorly understood syndromes may have multiple different etiologies, with similar end-stage
 ➢ Ill-defined collection of pathophysiologies may be resistant to any single therapy
 ➢ Solidify diagnostic criteria
Aspects of NH Knowledge

• Identify distinct clinical phenotypes
• Identify distinct pathophysiology subsets
 ➢ Including genetic subsets
 ❖ Causative gene or modulating gene
• Standard of care
 ➢ Potential that supportive care or unproven Tx have effects on disease course
 ➢ Care of patients at time of measurements
 ➢ Historical may be different from current
• Biomarkers correlating with disease course
• Biomarkers for MoA pharmacologic responses
Aspects of NH Knowledge

• Comprehensive identification of disease features
 ➢ Major and minor
 ➢ Survival
 ➢ Physical function abilities
 ➢ Sensory function abilities
 ➢ Neuropsychological function abilities
 ❖ Cognitive
 ❖ Psychiatric
Aspects of NH Knowledge

- Full range of severity of manifestations
- Pace of development of manifestations
- Frequency each manifestation occurs
- Method to reliably measure the manifestations
- Intra-patient variability
 - Day to day severity
- Inter-patient variability
 - Which manifestations present
 - Relative severity of different manifestations
 - Time course of manifestation progression
NH Knowledge: Tx Study Outcome Comparator?

• Historical control concept
 ➢ Suitable only in very special cases

• Most rare disorders not amenable to defining a highly homogenous subset with uniform, reliable outcome, rigorously recorded

• Some cases may be suitable to consider
 ➢ Highly homogenous disorder or phenotype
 ➢ Patient evaluation(s) highly uniform across multiple sites in NH study
 ➢ Pt evaluation rigorously recorded at all sites in NH study
 ➢ Pt evaluation not easily influenced by variations in patient care
General Design Types of NH Study

• Published medical literature review
• Retrospective chart review
• Prospective cross-sectional
• Prospective longitudinal

• View NH knowledge as a knowledge development program
 ➢ May have multiple parts or stages
Retrospective Chart Review

• Often a starting place for a NH knowledge program
• Usually not sufficient for all objectives
• Guide to designing a prospective longitudinal study
• Limitations
 ➢ Often because clinical care chart records were for purposes of clinical care, not objectives of NH study
Retrospective Chart Review

- Data often not comprehensive
 - Determined by utility for clinical care at that time

- Variability in what was evaluated and how it was recorded
 - Often varies from site to site
 - May vary within site over time
 - Quality of data may vary
 - Erroneous data not corrected (e.g., lab values)
 - Particularly when not important for clinical care
 - Even if intended to be same aspect of disease
Prospective Cross-Sectional

• May be efficient method to get moderately detailed understanding of disease
• Usually cannot provide knowledge about pace of disease
 ➢ Exception for very uniform disease with reliably identifiable moment of onset
 ➢ Uncommon
• Can be strong guide to designing a prospective longitudinal study
• Valuable for outcome tool development
Prospective Longitudinal

• Most comprehensive understanding of disease
 ➢ Greatest depth
 ➢ Greatest richness

• Most detailed source of knowledge on pace and sequential course of disease

• Sustained commitment from patients and investigators essential
 ➢ Longitudinal defined in context of the disease

• Most valuable design for depth and strength of knowledge to apply to clinical trial issues
Design Principle – NH Study as an Evolving Protocol

• Some NH objectives may require multi-step approach to achieve
 ➢ May not know at outset exactly what, when, or how to measure to achieve an objective
 ➢ e.g., New endpoint development

• Analyze accumulating data periodically
• Plan to refine questions the study is addressing, and revise data collection design to progressively advance to ultimate objective
Protocol Evolution Example

- **Biomarkers**
 - Initial measurements may indicate biomarkers that appear promising vs those that do not
 - Eliminate unpromising biomarkers
 - Increase data on promising biomarkers
 - May need to refine assay for more precision
 - May need to add other biomarkers physiologically related
 - May need to revise sampling frequency plan, or synchronize sampling with clinical events
Protocol Evolution Example

• Clinical trial outcome measures
 ➢ What manifestations can be measured?
 ➢ What ones have stability over time if intending to show restoration of function?
 ➢ What ones have uniform worsening if intending to show slowing of progression?
 ➢ What methods are available to measure the manifestation? Are they reliable?
 ❖ Suitable to this patient population and the severity of the manifestation
 ➢ Are new measurement methods needed?
 ❖ Devise, try out, analyze, revise
 ❖ Interactive process with study design, evaluation
Learn and Confirm Within NH Study

- Initial ‘hypothesis’ allows identifying data to obtain
- Utilize data of early period of study to refine the measurement or hypothesis
- Subsequent data used to prove ‘hypothesis’ that states a reliable choice or conclusion
- Interim analyses may indicate data that would be useful to collect but was not apparent initially
- NH Study is not a fixed protocol study methodology
Community Endeavor

• Successful NH study for rare diseases most likely to succeed if it is a unified community-wide endeavor
 ➢ Multiple separate efforts lead to incompatibility of data and incompleteness of data
 ➢ Rarity of patients prevents individual site from succeeding alone

• Value of NH knowledge maximal when data is shared widely
 ➢ Data shared with other investigators
 ➢ Including those not in same specialty
 ➢ Absence of access to data can impair progress as much as absence of data
Community Endeavor

- Multiple investigators
 - Multiple sites
 - Common accepted protocol
- NIH role
 - Direct investigators
 - Support of studies; ensuring commonality of effort
- Industry role
 - Need to initiate study before Tx candidate in hand
 - May need to initiate before decision to attempt Tx in the disorder
 - May be difficult to justify resources for a private endeavor
Community Endeavor

- **Patient groups**
 - Can identify patients
 - Educate patients and families on NH value
 - What it will produce and what it will not, how it is valuable, importance of consistent commitment
 - Help sustain involvement
 - Might help in data collection, management

- **FDA**
 - Experience in rare disease Tx development programs; perspective on distant objectives for the NH study to build in from outset
 - Advisory role
Study Operational Structure Concepts

• How is study conduct organized
 ➢ Many choices influenced by specifics of disease and study objectives

• Centralized vs. dispersed data management
 ➢ Centralized quality checking
 ➢ Ongoing analyses of full existing database support study design evolution concept
Study Structure Concepts

- Pure widely dispersed model
 - Many local clinics with few patients or
 - Patient’s individual physician conducts protocol
 - Collects and reports data
 - Convenience for patients
 - Infrequent use of protocol at each site
 - Risks variability between sites in how evaluations performed, data quality, data quantity (patient call back)
Study Structure Concepts

• Pure central clinical site model
 ➢ Patients travel to single, highly experienced site
 ➢ Inconvenient for patients
 ➢ Investigator and staff experienced and effective
 ✷ All data collected in consistent manner
 ✷ Good accounting for all patient follow up and timing
 ✷ Complex evaluations can be reliably performed
 ✷ Specialized skills or infrastructure can be available
Study Structure Concepts

• Mixture clinic model
 ➢ Dispersed clinics for easy to perform evaluations that occur on more frequent basis
 ➢ Central site for less frequent but more intensive evaluations

• In home model
 ➢ Visiting health care provider or other trained persons
 ➢ Most convenient for patients
 ➢ For less intensive evaluations or sample collection that is obtained on frequent basis
 ➢ Sufficient training to perform on reliable manner
Study Structure Concepts

• Patient reported model
 ➢ Especially attractive as internet collection
 ➢ Reliability of measurements must be considered
 ➢ Chiefly for less quantitative evaluations
 ❖ Training of patients (families) on how to report
 ❖ Reporting tool tested for reliability across range of patients and families
 ➢ Easiest model for high frequency reporting
Study Structure Concepts

• Much work still needed to assess
 ➢ Efficiency
 ➢ Effectiveness
 ➢ How to match structure design to study design
 ➢ Quality, and training for quality

• Suitability of approaches likely to vary for different rare diseases
Closing Points

• NH knowledge can be essential to Tx development
 ➢ Extensive NH knowledge can make the disorder attractive to undertake Tx development
 ➢ NH knowledge enables many Tx development program options to be understood

• Good NH knowledge comes from soundly planned and conducted studies

• Planning requires identifying objectives
 ➢ In detail
 ➢ For near term and later uses of data

• NH study design can evolve as knowledge grows

• Importance of community-wide effort