

www.fda.gov

Importance of Natural History Studies in Rare Diseases

Anne R. Pariser, M.D. Associate Director for Rare Diseases Office of New Drugs Center for Drug Evaluation and Research US Food and Drug Administration

www.fda.gov

Outline

- Why we need natural history data for rare diseases
- Natural history study definition
 Historical controls
- Natural history and clinical development
- Key points

Begin with the end in mind...

www.fda.gov

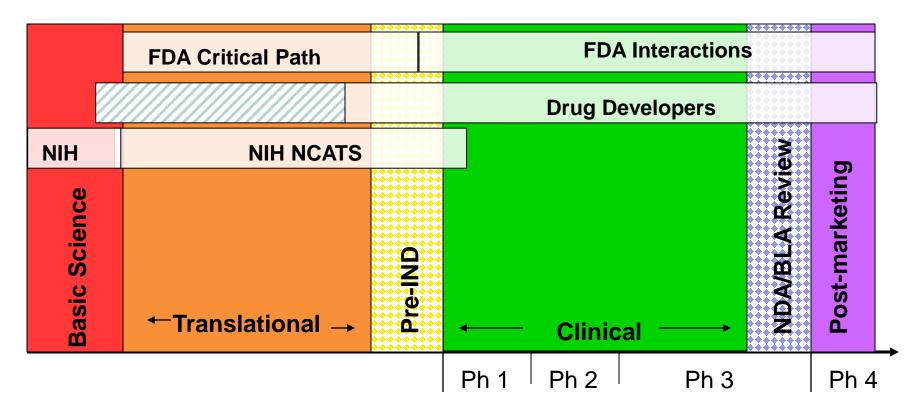
Natural History Studies

- Purpose: To inform drug development
 - Marketing approvals require design and conduct of adequate and well-controlled studies
 - Designing A & WC studies requires a scientific foundation upon which to build
 - Knowledge of disease NH is an essential element in the scientific foundation of any clinical development program
 - Rare diseases, in general, are poorly understood
 - Important and essential role for NH studies in rare disease drug development (IND phase) to facilitate efficient clinical development

Rare Diseases and Orphan Drugs

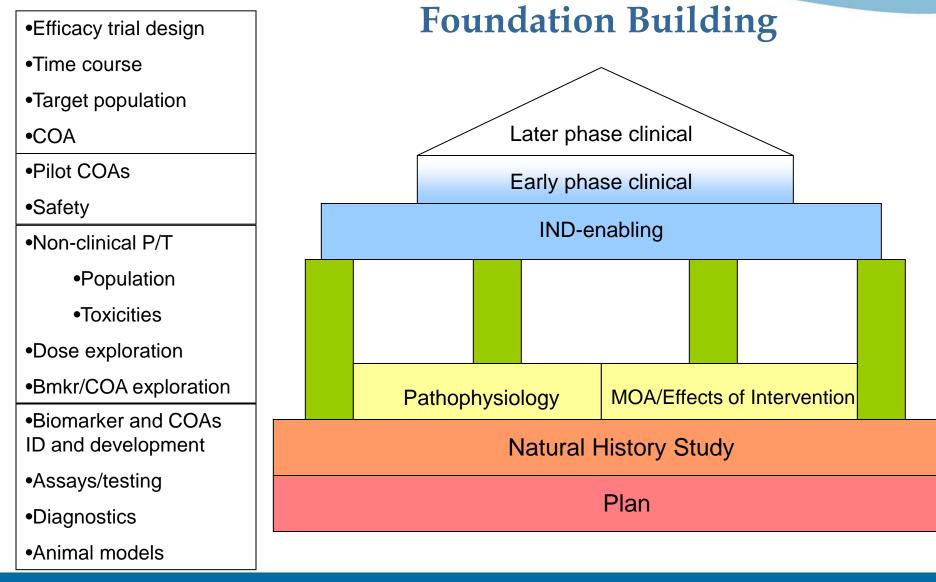
- What is different about rare diseases and Orphan drugs?
 - Diseases are usually poorly or incompletely understood
 - Generally, the lower the prevalence, the less well we tend to understand them
 - Small populations
 - Limited opportunity for study and replication
 - Highly heterogeneous group of disorders
 - 7,000 different diseases
 - Often high phenotypic diversity within individual disorders
 - Usually little precedent for drug development within individual disorders
 - Often requires more (and more careful) planning than non-Orphan
 - Need a solid scientific base upon which to build an overall program

CDER New Molecular Entities & New Biologic Approvals 2011-2012


www.fda.gov

Disease Precedent ?				
Yes	No			
2012 (as of May 13, 2012)				
Respiratory Distress Syndrome in	Methotrexate toxicity			
premature infants	Cystic Fibrosis G551D mutation			
Gaucher disease				
2011				
Organ rejection, kidney transplant	Advanced melanoma			
Hodgkins lymphoma	Melanoma BRAF mutation			
Hereditary Angioedema	Medullary thyroid cancer			
Acute lymphoblastic leukemia	Anaplastic systemic large cell			
Transfusional iron overload	lymphoma			
Lennox-Gastaut	Alk+ non-small cell lung cancer			
	Myelofibrosis			

• In same time period for non-rare disease indications: 24 NME/NBs, only 2 did not have disease precedent (8%)



Drug Development – Linear Concept

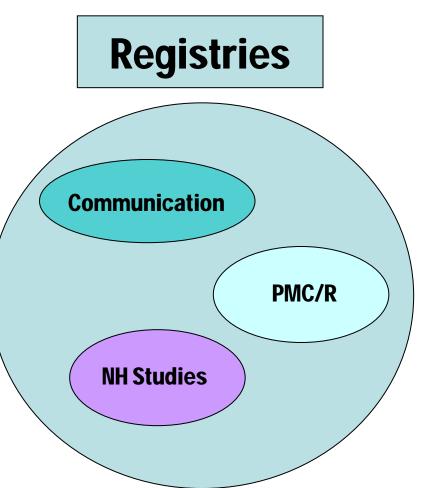
Parallel Concept

www.fda.gov

Adequate and Well-Controlled Studies

- A&WC studies require¹
 - Research goal/objective
 - Valid comparison with a control
 - Concurrent (strongest) or historical
 - Appropriate selection of subjects
 - Method of assignment to treatment and control
 - Measures to minimize bias
 - Well-defined and reliable methods of assessing response
 - Adequate analysis of results

www.fda.gov


Natural History Studies Definition

www.fda.gov

NH Study Versus Registry

- Registry ≠ NH Study
- Registries can include:
 - Communication
 - Post-marketing commitments/requirements e.g.,
 - Intervention assessment
 - Safety
 - NH Study
 - Specific purpose
 - Intended to be comprehensive, granular
 - Intended to describe the disease

Natural History of a Disease

"The natural course of a disease from the time immediately prior to its inception, progressing through its presymptomatic phase and different clinical stages to the point where it has ended and the patient is either cured, chronically disabled or dead without external intervention"²

²Posada de la Paz M; Groft SC. 2010. *Rare diseases epidemiology.* Vol. 686

Natural History Studies

- Track course of disease over time
- Identify demographic, genetic, environmental and other variables that correlate with disease and outcomes in the absence of treatment
- "Pillar of epidemiologic research on rare conditions"³
 - Many potential uses/functions of NH study data in addition to drug development, e.g.
 - Patient care, best practices
 - Research priorities identification
 - "centers of excellence" development, clinical trial readiness

³Institute of Medicine. 2010. Rare Disease and Orphan Products. Accelerating Research and Development

Historical Controls

- Infrequent application of NH study or registry data
 - "usually reserved for special circumstances"⁴, e.g.:
 - diseases with high and predictable mortality
 - Effects of drug self-evident
- Purpose of any control is to measure what *might* have happened
- Historical control
 - Different patients using alternative treatment
 - During different times and in different places
 - Requires
 - Adequate documentation
 - Comparable patients or populations
 - Doesn't account as well for pertinent variables as concurrent controls can

Historical Controls (2)

- Two general types
 - Informal/implicit
 - Based on general knowledge
 - E.g. change from baseline implicit comparison to what would have happened without the intervention
 - Plainly reasonable when
 - Effect is dramatic, rapid following treatment, unlikely to have occurred spontaneously
 - Specific experience
 - Actively sought, often through a formally conducted NH study
 - Objective, verifiable measures
 - Must be a fair comparison to interventional study population

⁵FDA. Guidance for Industry. E10 Choice of control group and related issues in clinical trials. 2001.

www.fda.gov

Natural History and Clinical Development

CDER NME & New Biologic Approvals in 2012⁶

Rare

- Glucarpidase (MTX tox)
- Ivacaftor (CF G551D)
- Lucinactant (RDS newborns)
- Taliglucerase

Common

- Ingenol (actinic keratosis)
- Axitinib (renal cell CA)
- Tafluprost (glaucoma)
- Peginesatide (anemia in CKD)
- Vismodegib (basal cell CA)
- Avanafil (erectile dysfxn)

⁶As of May 13th 2012, available at Drugs@FDA

http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm

CDER APs 2012 – Disease Precedent

Rare		Common		
Yes	No	Yes	No	
Lucinactant	Glucarpidase	Ingenol		
Taliglucerase	Ivacaftor	Axitinib		
		Tafluprost		
		Peginesatide		
		Avanafil		
		Vismodegib		

www.fda.gov

Glucarpidase

- Indication: Treatment of toxic plasma methotrexate concentrations due to impaired renal function
- Full approval
 - Pharmacodynamic endpoint
 - Proportion of subjects with elevated MTX level who achieved rapid and sustained clinically important reduction (RSCIR) in MTX level ≤1 µmol/l

www.fda.gov

Glucarpidase (2)

- Evidence of effectiveness
 - Analysis of subset of patients (n=22) in an NCI-sponsored study who had evaluable MTX levels post-glucarpidase administration
 - NCI trial: prospective, OL, historically-controlled, nonrandomized single-arm compassionate use trial in 184 patients with high-dose MTX-induced nephrotoxicity and delayed MTX excretion.
 - "not feasible to prospectively study glucarpidase in a randomized placebo controlled trial for this indication...emergency situation that occurs unpredictably"⁷
 - 10/22 patients (45%) met criteria for RSCIR
 - All 22 patients >95% reduction in MTX for up to 8 days

⁷Patricia Dinndorf, M.D., Clinical Review BLA 125327, available at Drugs@FDA

www.fda.gov

Glucarpidase (3)

- Historical Information
 - MTX available since 1948
 - Used for higher-dose (e.g., leukemias, sarcomas) as well as lower-dose (e.g., RA) indications
 - Large and long-term clinical experience
 - Effects, mechanism of action, toxicity, excretion and metabolism well understood
 - Adverse effects of toxic MTX levels well understood
 - E.g., MTX excretion curve and correlation with increased risks of toxicity and MTX C_{max} and AUC, and repeated confirmation

www.fda.gov

Glucarpidase (4)

- Historical Information cont.
 - "rapid and sustained plasma levels of MTX below this threshold in patients with renal compromise and toxic plasma levels of MTX due to delayed MTX clearance represents a pharmacodynamic endpoint that is judged to be a valid surrogate endpoint"⁷
 - "Given the extensive data... the (MTX) excretion curves are well-characterized and can be used as an historical control against which the results of this trial can be assessed for efficacy and is sufficient to provide a clear assessment of the treatment effect"⁸

⁷Patricia Dinndorf, M.D., Clinical Review BLA 125327, available at Drugs@FDA ⁸Patricia Keegan, M.D., Summary Review BLA 125327, available at Drugs@FDA

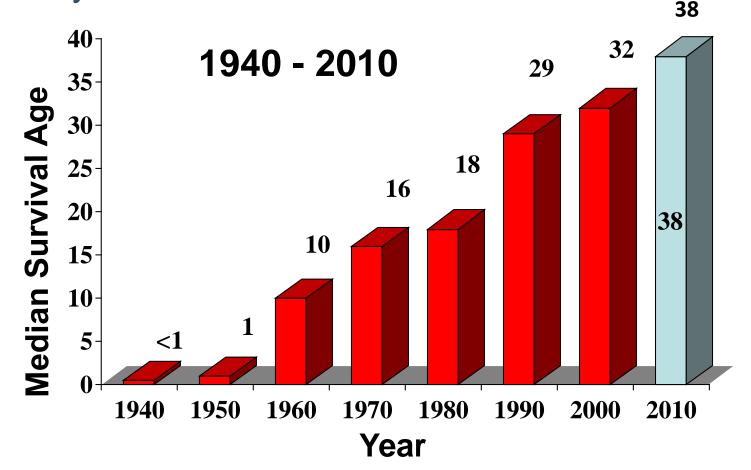
www.fda.gov

Ivacaftor

- Indication: Treatment of Cystic Fibrosis in patients age 6 years and older who have a *G551D* mutation in the CFTR gene
- Efficacy demonstrated in 2 R, DB, PC trials
- Robust demonstration of clinically meaningful benefit in several aspects of CF⁹
 - Lung function
 - Pulmonary exacerbations
 - GI function/substantial weight gain

⁹Badrul Chowdhury, MD, PhD, Summary Review NDA 203188, available at Drugs@FDA

www.fda.gov


Ivacaftor (2)

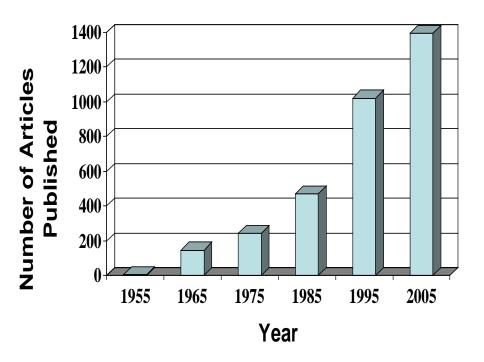
- Historical information
 - CF gene identified in 1989
 - Long-standing registry, disease welldescribed
 - CF registry and care network established in 1960
 - Extensive disease history prospectively collected which continues to inform research, development and patient care

www.fda.gov

Median Survival Age of Patients with Cystic Fibrosis

Source: Cystic Fibrosis Foundation, National Patient Registry

Slide courtesy of Preston W. Campbell, MD, CF Foundation. Used with permission



www.fda.gov

CF Investments in Research Advance Science

- 1980 research development program established
- 1985- CF basic defect described
- 1989- CF gene (CFTR) cloned
- 1990's- CFTR biology advances rapidly
- 2005- CFTR consortia funded as Manhattan-like projects to focus on CFTR trafficking, structure, and function

Cystic Fibrosis Publications in Medical/Scientific Journals

Slide courtesy of Preston W. Campbell, MD, CF Foundation. Used with permission

CYSTIC FIBROSIS FOUNDATION THERAPEUTICS PIPELINE

Gene Therapy		COMPACTED DNA					
CFTR	POTENTIATOR VX-770						
Modulation				ATALUREN			
Wouldton	CORRECTOR	VX-809 PLUS POTENTIA	TOR VX-770				
Restore Airway							
Surface Liquid		050411		BRONCHITOL			
-		GS9411					
Mucus					PULMOZYME		
Alteration							
			AL N-ACETYLCYSTEINE		IBUPROFEN		
Anti-							
Inflammatory	INHALED GLUTATHIONE KB001						
	GSK SB 656 933 SILDENAFIL						
					тові		
	AZITHROMYCIN CAYSTON						
Anti-Infective	TIP (TOBRAMYCIN INHALED POWDER)						
Anti-infective	MP-376						
			GS 9310/11	ARIKACE			
			BAY Q3939				
Transplantation			INHALED CYCI	OSPORINE			
					A see A DEEL a		
Nutrition	AquADEKs PANCRELIPASE PRODUCTS						
				LIPROTAMASE			
	PRE-CLINICAL	PHASE 1	PHASE 2	PHASE 3	AVAILABLE		
	Initial Testing in Laboratory	Human Safety Trial	Human Safety & Efficacy Trial	Definitive Trial	то		
		11181	Emcacy man		PATIENTS		

Slide courtesy of Preston W. Campbell, MD, CF Foundation. Used with permission

Key Points

- #1 NH data contribute to scientific foundation upon which drug development programs can be built
 - Rational, scientifically-based drug development requires an understanding of the disease
 - NH describes the disease independent of individual investigational agents
 - Most informative when NH study data are available early in development
 - Ideally before design of efficacy trials
- #2 Patient and caregiver involvement is important
 - Engage all stakeholders early and on an ongoing basis

www.fda.gov

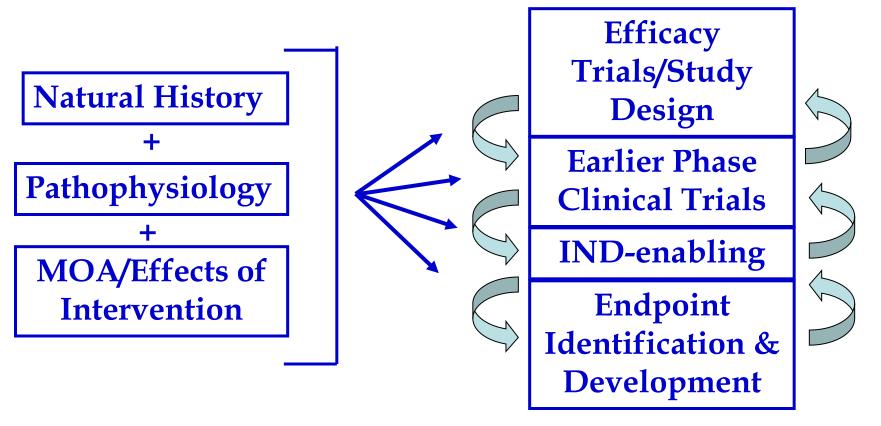
Key Point #3

- Monolith¹⁰ (mon •uh •lith)
 - an obelisk, column, large statue, etc., formed of a single block of stone
 - Something having a uniform, massive, redoubtable, or inflexible quality or character

¹⁰dictionary.com

Rare diseases are a highly diverse collection of disorders

-Design and conduct of clinical development programs are highly individualized


-Dependant on disease and population under study, understanding of the intervention and its expected impact on the disease

www.fda.gov

Key Points #4

Drug development as a continuum Efficiency ≠ corner-cutting

Questions?

